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Abstract
Crystallographic orientations can be measured using scanning electron microscope-based techniques, such as electron back-
scatter diffraction (EBSD). The orientation data thus obtained may contain noise and misindexed data. There are several 
methods to restore the orientation data. The restorations from these methods may have varying levels of quality. Moreover, 
many such methods are parameter-dependent. Therefore, finding suitable parameter settings for optimal restorations can 
take time and effort for users of such methods. In this paper, we propose an algorithm to obtain high-quality restorations of 
noisy orientation data and to circumvent the parameter selection problem by automating it. We estimate the noise variance 
in the data to determine the amount of denoising to apply. We then use this information to determine the stopping criteria 
for a vector-valued weighted total variation flow, a nonlinear diffusion applied to the noisy orientation map. We compare 
the results obtained by our approach with the results from other commonly used denoising filters. As benchmarks, we used 
simulated EBSD maps with varying noise levels. Our proposed method outperformed denoising methods, such as mean, 
median, spline, half-quadratic, and Kuwahara filters. The denoising results were statistically significantly better for higher 
levels of noise.
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Introduction

Polycrystalline materials consist of aggregates of crys-
tal grains, regions with similar crystalline orientations. 
The grain orientations are obtained using various tech-
nologies such as electron-backscatter diffraction (EBSD), 

transmission electron microscopy (TEM) [1], automated 
crystal orientation mapping inside the transmission elec-
tron microscope (ACOM-TEM) [2], and the X-ray diffrac-
tion (XRD) [3]. In recent years, high-energy X-ray diffrac-
tion microscopy (HEDM, also known as 3D-XRD) [4] is 
also used to obtain orientation data. The EBSD technique 
obtains such data as Euler angles [5]. Orientation maps thus 
obtained can be used to calculate various microstructure sta-
tistics, e.g., average grain sizes [6], or to simulate micro-
structure physics [7].

However, the orientation data collected by such tech-
niques are not perfect. The data collected often contain 
misorientation noise. Moreover, the range of the angle data 
can cause further misorientation errors [8]. Misindexing is 
another problem present in EBSD orientation data. Misin-
dexing at a point is a random orientation change caused by 
various external factors [9]. Isolated points or clusters of 
points are categorized as misindexed if their corresponding 
angles differ significantly from their local neighbors. Misin-
dexed data points can appear as impulse noise.

In this paper, we propose a new algorithm for address-
ing the issues of misorientation noise, jump discontinuities, 
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and misindexing errors in crystallographic orientation data. 
There are numerous methods to restore the orientation data, 
which include traditional filters such as the mean, median, 
and spline filters [10], as well as advanced techniques such 
as Kuwahara filter [11], half-quadratic filter [12] to name a 
few. These algorithms come with various levels of denoising 
and restoration performance, and obtaining their best perfor-
mances can be tedious in practice as the user of these algo-
rithms may need to tune algorithm parameters and execute 
multiple test runs with different parameters to compute the 
best result. We recognize this difficulty and propose a resto-
ration algorithm that performs better than most widely used 
algorithms and does not require tuning denoising parame-
ters. Our approach is first to remove the jump discontinuities 
from the data. We then correct the misindexed data points. 
Finally, we use vector-valued weighted total variation (TV) 
flow to denoise the data. To tune the amount of denoising, 
we estimate the noise in the data using a fast noise estima-
tion technique [13], and use this information to determine 
the amount of denoising to perform, and thus obtain a res-
toration of the data using total variation flow [14, 15] to 
the Euler angles f  representing the grain orientations. We 
compare our approach with established methods.

Current Approaches for Restoration of Orientation 
Data

Given noisy orientation data f  , we can use various existing 
denoising algorithms to obtain denoised data u . We list a few 
of these algorithms here. 

	 i.	 Mean filter: The restored data at a location x = (x, y) 
is a formal averaging of the orientations in the spatial 
neighborhood N(x) of x.

	 ii.	 Median filter: The denoising is achieved by replacing 
the data at x with the median of the neighborhood 
orientations.

	 iii.	 Spline filter: We minimize the distance between the 
given orientation data f  and the solution u , using the 
square of the Euclidean norm of the Laplacian of the 
orientation data as the penalty term to enforce regu-
larization.

	 iv.	 Kuwahara filter: We split the neighborhood N(x) into 
smaller subregions Ni(x) for i = 1, 2, 3, 4 . Then the 
data at x is replaced by the mean in the subregion 
Nj(x) with the least variance [11].

	 v.	 Half-quadratic filter: The half-quadratic filter uses the 
total variation (TV) of u [14] as the penalty term [12] 
to induce regularization. It uses a cut-off at a certain 
threshold angle, such that the disorientation angles 
larger than the threshold, e.g., at grain boundaries, are 
not penalized.

Contributions of the Paper

One of the drawbacks of the denoising algorithms mentioned 
in Sect. 1.1 is that the algorithm-specific parameters need to 
be adjusted depending on the noise in the given orientation 
data. For example, one needs to set the parameters for the 
TV penalty, and the threshold angle in the half-quadratic 
filter [12]. How to set the correct values for these param-
eters is not obvious for non-expert users of these algorithms. 
This paper proposes a denoising methodology that does not 
depend on the user to set the denoising parameters. To fur-
ther improve the quality of restorations, we propose a pre-
processing algorithm to correct for angle jump discontinuity 
and misindexing. In Sect. 2, we discuss this preprocessing 
algorithm and denoising using the weighted total variation 
(TV) flow. Using the “weight” in the TV flow was shown to 
better preserve prominent edges in images compared to regu-
lar TV flow, and other standard denoising algorithms [15]. In 
EBSD maps, the grain boundaries are the prominent edges, 
e.g., see Fig. 2a. Hence, using a spatially-varying weight 
in our algorithm retains the grain boundaries as the weight 
inhibits data diffusion on the grain boundaries. In Sect. 4, we 
present the results of the proposed algorithm and its com-
parison with the contemporary methods. Tables  4 and 5 
show that our proposed algorithm performs better than other 
contemporary methods, especially for high noise levels.

The Proposed Algorithm

We describe the details of our algorithms in this section. 
Before denoising, we may need to remove the angle jump 
discontinuities within grains [8] and correct the misindexed 
data. To this effect, we propose preprocessing the orien-
tation map in Appendix A. We then use the vector-valued 
weighted TV flow to denoise this preprocessed data, which 
we describe in Sect. 2.1. We note that, on average, the pre-
processing step improved the weighted TV denoising by 
about 10 to 30% . We also observed that the preprocess-
ing step contributed less toward denoising for higher noise 
levels.

Weighted TV Flow

The orientation data u0 is in the three-dimensional space 
of Euler angles, i.e. u0 ∶ ℝ

2
→ SO(3) . Thus, the orienta-

tion data u0 is a vector-valued function on Ω ⊂ ℝ
2 , with 

u0 = ⟨u(1)
0
, u

(2)

0
, u

(3)

0
⟩ . In presence of noise � , the resulting 

data that we observe is f = u0 + � . Variational methods 
such as total variation (TV) regularization [14] have been 
used for denoising of image data where one seeks the solu-
tion û the following minimization problem [16]
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where ‖u‖TV(Ω) ∶=
�∑3

k=1

�
∫
Ω
�∇u(k)��2

� 1

2 is the TV norm, 
and BV(Ω) is the space of functions of bounded variation. 
The Euler–Lagrange differential equation describing the 
optimal solution û for this minimization problem depends 
on the parameter � . The parameter � dictates the level of 
noise still present in the solution of the minimization prob-
lem (1), see [17]. The higher � is, the closer the solution û is 
the noisy data f  . Hence, a value of � needs to be determined 
that is suitable for the noise level in the data f  . Chambolle 
[18] addresses this problem, but their approach requires 
solving the minimization problem (1) multiple times for dif-
ferent candidate values of � . Instead, we omit � in (1) and 
propose using the vector-valued TV flow corresponding to 
the minimization problem minu∈BV(Ω) ‖u‖TV(Ω) . For this, we 
solve the following partial differential equations

starting with the initial conditions u(k)(⋅, 0) = f (k) , and the 
Neumann boundary conditions �u

(k)

�n̂
||
�Ω

= 0.
The grain orientation data has well-defined grain bounda-

ries. While the TV flow is effective for denoising the orienta-
tion data, it also diffuses the grain boundaries (see Fig. 2 g). 
To overcome this issue, we use weighted vector-valued TV 
flow, following [15, 19].

w h e r e  u(k)(⋅, 0) = f (k)   ,  �u(k)

�n̂
|
�Ω

= 0  a n d 

‖u‖TV� (Ω)
∶=

�∑3

k=1

�
∫
Ω
��∇u(k)��2

� 1

2 , with � ∶ Ω → ℝ a 
weight function such that �(x) ≈ 1 if x is in a homogeneous 
region, e.g., inside a grain, and �(x) ≈ 0 if x is on an edge, 
e.g., the grain orientation boundary. We propose using the 
time-dependent PDE (3) starting with initial data f  until we 
obtain a denoised solution û . This approach requires an 
appropriate stopping criterion.

The weight function �(x) can be defined using edge map e(x), 
which is 1 if x is an edge location and 0 otherwise. Since an edge 
map, e obtained from a noisy image, is also noisy, it needs to be 
cleaned. To obtain a clean edge map where edges coincide with 
grain boundaries, we first run unweighted ( � = 1 ) TV flow and 
get a smoothed image f̂  . We then run the Farid edge detector on 
f̂  [20], clean up and enhance the detected edge map with mor-
phological operations of small object removal and skeletonizing 
the edge map [21]. We define a numerically well-behaved � by 
smoothing 1 − e with a Gaussian kernel.

(1)û = argmin
u∈BV(Ω)

�‖u‖TV(Ω) + �‖f − u‖2
L2

�
,

(2)�u(k)

�t
=

‖u(k)‖TV(Ω)
‖u‖TV(Ω) div

�
∇u(k)

�∇u(k)�
�
, for k = 1 to 3

(3)�u(k)

�t
=

‖u(k)‖TV� (Ω)

‖u‖TV� (Ω)

div

�
�∇u(k)

�∇u(k)�
�
, for k = 1 to 3

Data‑driven Stopping Criterion

An appropriate stopping criterion is needed to stop the evo-
lution of the time-dependent PDE (3) and to obtain the 
desired solution û . We use the approach by [13] to estimate 
the noise variance 𝜎̂2

k
 in each of the three channels of f  . For 

the TV flow (2) and weighted TV flow (3), we stop the 
numerical i terations in the k th channel when 
1

�Ω� ‖u(k) − f (k)‖2
L2(Ω)

 exceeds 𝜎̂2

k
.

Methods and Experiments

Synthetic Data Acquisition and Performance 
Comparisons

In order to objectively evaluate a denoising method, we 
needed the ground truth data. To this effect, we used the 
software DREAM.3D [22] and generated synthetic EBSD 
maps for ground truth. The synthetic EBSD maps were 
drawn from a random orientation distribution function 
(ODF) with mean = 3 μm and standard deviation = 0.3 μm . 
We added noise to the ground truth data, then used the 
denoising method to obtain the denoised data. We could 
thus compare the denoised data with the ground truth.

Measuring the Denoising Quality 
with Disorientation Angle ı

In classical image processing algorithms, measuring the 
quality of denoising usually entails measuring the differ-
ence between the denoised data and ground truth, typically 
using an �2 difference [10]. However, two numerically dif-
ferent EBSD maps might be crystallographically identical 
due to crystal symmetry [23]. Since we cannot use a simple 
numerical difference to measure the denoising quality, we 
need to devise a new measure suitable for crystallographic 
data.

Orientation O of a crystal refers to rotations that map 
coordinates of a crystal reference frame to coordinates of 
a specimen reference frame [23, 24]. Moreover, OS with 
S ∈ S denotes the class of all orientations equivalent to 
O with respect to the symmetry group S. The difference 
between two true orientation O

1
 and the denoised orientation 

O
2
 is measured by the misorientation matrix O

1

−1O
2
 . The 

class of symmetrically equivalent misorientations thus are 
S−1
1
O−1

1
O2S2 with S1, S2 ∈ S . The smallest rotational angle 

� corresponding to the misorientation is called the disorien-
tation angle. We use the mean per-pixel � as a measure of 
the difference between the ground truth and the denoised 
data and refer to this measure as ‘the denoising error’. The 
smaller the denoising error between the denoised EBSD data 
û and the ground truth f, the better the denoising quality.
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Adding Noise to the Synthetic Data

To measure the effectiveness of the denoising algorithms, 
we needed to add a known amount of noise to the EBSD 
ground truth data and compare the denoised data with the 
ground truth. Following [25], we chose to add noise ani-
sotropic Bingham distribution, which is a generalization 
of the Gaussian distribution suitable for the orientation 
data. Following [24] we approximated this noise by the de 
la Vallée Poussin noise [26] with the following distribution 
function g(q) =

B(
3

2
,
1

2
)

B(
3

2
,�+

1

2
)
q2�
1
, where q1 is the real part of the 

quaternion representation of the orientation, q , B denotes 
the beta function, and � is the concentration parameter. 
The parameter � is related to the half-width b of the noise 
by � =

1

2

ln(
1

2
)

ln cos(
b

4
)
. We use the half-width parameter b to 

describe the noise level; a larger half-width b makes the 
data noisier. In this paper, we added the de la Vallée noise 
with half-widths of b = 4, 8, 12, and 16 to clean synthetic 
EBSD map and obtained four different levels of noisy 
EBSD maps. We chose these values to represent a range 
of misorientation noises. Since it is not obvious how a 
noise level with a particular value of b presents itself, we 
show in Fig. 1 examples of EBSD maps with hexagonal 
symmetry with varying b values. Figures 1 (i)–(iv) depict 
IPF-z maps corresponding to EBSD data with de la Vallée 
Poussin noise of half-width b = 4, 8, 12 , and 16, respec-
tively, added to a EBSD map generated using DREAM.3D. 
To give an intuitive understanding of the noise levels, we 
compute the disorientation angle values ( � ) corresponding 
to these half-width values of b and present them in Table 1.

We denoised the noisy data using different denoising 
algorithms. To obtain the denoising results with mean, 
median, spline, and Kuwahara filters, we used MTEX, an 
open-source Matlab® package [27]. See [28] for details of 
the steps of denoising using MTEX.

Denoising Experiments

Denoising with the Proposed TV Flow and Weighted TV 
Flow

We preprocessed the noisy EBSD data using the algorithm 
described in Appendix A. We estimated the noise variance 
�
2

k
 in each data channel using the fast noise estimation algo-

rithm in [13]. Using this estimate for the stopping criteria, 
we applied the TV flow and the weighted TV flow. We 
provide a detailed semi-implicit numerical scheme for the 
weighted TV flow in Appendix B. Setting � = 1 gives the 
scheme for the “unweighted” TV flow.

Denoising Experiments with Various Algorithms

After adding a varying level of de la Vallée Poussin noise to 
the EBSD maps (a dataset of 10 synthetic maps with hexago-
nal symmetry), we denoised these data using mean, median, 
spline, Kuwahara, half-quadratic filters, TV flow, and the 
weighted TV flow. We recorded the denoising error per pixel 
for each experiment by comparing the denoised image with 
the clean synthetic image. For the mean, median, spline, 
Kuwahara, and half-quadratic filters, we used MTEX’s [27] 
built-in algorithms to obtain these results.

(i) b = 4 (δ = 0.56◦) (ii) b = 8 (δ = 0.67◦) (iii) b = 12 (δ = 1.06◦) (iv) b = 16 (δ = 1.45◦)

Fig. 1   Effect of adding noise to the clean image in Fig. 6 with various lev-
els of de la Vallée Poussin noise. (i) noisy image with de la Vallée Pous-
sin noise with half-width b = 4 (the disorientation angle � = 0.56◦) , 

(ii) noisy image with b = 8 (� = 0.67◦ ), (iii) noisy image with 
b = 12 (� = 1.06◦) , (iv) noisy image with b = 16 (� = 1.45◦)

Table 1   Half-width and the 
disorientation angles

The disorientation angles � for 
the noise corresponding to half-
width parameters, b, for the 
EBSD maps in Fig. 1

Half-width ( b) Disorienta-
tion angle 
( �)

4 0.56◦

8 0.67◦

12 1.06◦

16 1.45◦
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Statistical Comparison of the Weighted TV Flow 
and the (Unweighted) TV Flow

We first needed to determine whether weighted TV flow 
produced better denoising results than its unweighted 
counterpart. The algorithm corresponding to the least 
denoising error is the best-performing denoising algo-
rithm. However, if two algorithms have similar orienta-
tion errors, then the question of whether this difference is 
statistically significant or not becomes relevant. To find the 
statistical significance of the results, we employed paired 
t-tests [29].

To this effect, we measured the orientation errors, Xi for 
i = 1,… n , from n experiments from weighted TV flow and 
orientation errors, Yi for i = 1,… n , from the unweighted TV 
flow. These measurements are paired, i.e., if Xi is the disori-
entation error of the result from the weighted TV flow for 
the ith EBSD map, Yi is the denoising error of the result from 
the unweighted TV flow for the ‘same’ ith EBSD map. We 

define d ∶=
∑n

i=1
(Xi−Yi)

n
 , and thus the test statistic is 

TS =
d

S∕
√
n
 , where S is the sample standard deviation of the 

differences Xi − Yi for i = 1,… n . The test statistic has a 
t-distribution with n − 1 degrees of freedom. With this setup, 
the p-value is the probability of obtaining the observed or 
more extreme value of the test statistic, i.e., the p-value = 
Prob  (TS ≥ |TSobserved |) . A smaller p-value means the 
method with less error of the two methods is statistically 
significantly better than the other. Typically, p-value < .05 
is considered statistically significant.

Statistical Comparison of the Weighted TV Flow 
and Other Classical Denoising Algorithms

First, we compared the weighted TV f low with the 
unweighted TV flow. We found that the weighted TV 
flow consistently resulted in less denoising error than the 
unweighted TV flow. Thus, we compared the weighted 

Fig. 2   IPF-z maps of the results 
of denoising synthetic EBSD 
map with hexagonal symmetry 
with de la Vallée Poussin noise 
with half-width b = 8 using 
various filters

(a) clean (b) noisy (c) mean

(d) median (e) spline (f) Kuwahara

(g) half-quadratic (h) TV flow (i) weighted TV flow
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TV flow with other classical algorithms: mean, median, 
spline, Kuwahara, and half-quadratic. For each half-
width parameter b = 4, 8, 12, and 16, we compared the 
best algorithm with its nearest competitor amongst mean, 
median, spline, Kuwahara, and half-quadratic filters. For 
example, for b = 12 the best results are obtained by the 
weighted TV flow. So, we compared it with the median 
filter, which is its nearest competitor for this level of 
noise. Following Sect. 3.5, we used the paired t-test for 
these comparisons.

Experiments with Real EBSD Maps

We implemented TV flow, weighted TV flow, and algo-
rithms described in Sect. 3.4.2 on real EBSD maps for Tita-
nium with hexagonal symmetry. The real EBSD maps are 
courtesy of Dr. Adam Creuziger from NIST [30].

Results

Synthetic EBSD Data

In this section, we present the results of our experiments. 
We compared algorithms such as mean, median, spline, 
Kuwahara, half-quadratic, TV flow, and weighted TV flow. 
For each noise level (half-width b = 4, 8, 12, and 16), we 
used ten distinct examples of EBSD maps generated using 
DREAM.3D software. In Fig. 2 a, we exhibit a synthetic 
image without any noise, and Fig. 2b depicts the same image 
with de la Vallée Poussin noise of with half-width, b = 8 . 
Images presented in this paper depict the inverse pole fig-
ures visualized from the z-direction (IPF-z) unless stated 
otherwise.

Results of the Denoising Experiments and Average 
Orientation Errors

For every experiment, we computed the denoising error 
between the result, û , and the clean data, f. For each of 
the noise levels (with added de la Vallée Poussin noise 
with half-width parameters b = 4, 8, 12, and 16), we com-
puted the average denoising error over ten different EBSD 
maps. Figure 2 depicts the IPF-z maps for a set of denois-
ing results with de la Vallée Poussin noise. Figure 3 depicts 
the IPF-z maps for a set of denoising results with de la 
Vallée Poussin noise and 5% impulse noise simulating 
misindexing.

Results of the Statistical Comparison Between 
the Weighted TV Flow and the TV Flow

We computed the per-pixel orientation error for each 
algorithm with respect to the clean image. Thus less error 
implies that the denoised map is closer to the ground 
truth. The weighted TV flow produced less denoising 
error when compared to the unweighted TV flow. We 
compare the mean denoising errors for the two algo-
rithms in Table  2 for the noise levels b = 4, 8, 12, 16 , 
without any impulse noise. The weighted TV flow pro-
duced better results even in the presence of impulse 
noise, as seen in Table 3. Since we used ten noisy data-
sets from each noise level, we used the test statistic 
TS =

d

S∕
√
10

 which has a t-distribution with n − 1 = 9 

degrees of freedom. In each case, the difference was sta-
tistically significant ( p < .01).

Results of the Statistical Comparison 
of the Denoising Methods

For each noise level for half-width b = 4, 8, 12 , and 16, we 
used ten different EBSD data to compare various denois-
ing methods. Table 4 shows the average per-pixel denois-
ing errors for all the algorithms considered. The number 
of stars in each row in Tables 4 and 5 (when present) indi-
cates the significance of the p-value of the t-test comparing 
the weighted TV flow with the best method from the mean, 
median, spline, Kuwahara, and half-quadratic filter. The 
denoising error with the empirically best method is colored 
in yellow, whereas the error with the second-best method 
is in blue. For example, as seen in Table 4, for noise with 
b = 16 , the per-pixel denoising error for the weighted TV 
flow is 0.679, which is less than the other methods consid-
ered here. Since the spline filter produced the second least 
per-pixel denoising error of 0.800, it is the nearest com-
petitor of the weighted TV flow for half-width b = 16 . The 
paired t-test confirmed that this difference is statistically sig-
nificant with p-value < .01 . Whereas, for b = 8 , even though 
the half-quadratic produced the less per-pixel error of 0.502 
compared to 0.511 with the weighted TV flow, the p- value 
≈ .32 > .1 implies that this difference is ‘not’ statistically 
significant.

Denoising Results with the Real EBSD Maps

Finally, we obtained the denoising results by these algo-
rithms on experimentally obtained real EBSD maps of 
size 400 × 400 . Note that for real EBSD maps, the ground 
truth is not available for a quantitative comparison of the 
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denoising methods. Also, since differences in the results 
are not clear from the full-scale images, we selected a 
small region from these images to show the details of the 

denoising results in Fig. 4. Unlike synthetic data, the real 
data contains extra information, such as confidence metric 
that Dream.3D software can utilize. We used a pipeline of 

Fig. 3   IPF-z maps of the results 
of denoising synthetic EBSD 
map with de la Vallée Poussin 
noise with half-width b = 8 and 
5% impulse noise using various 
filters

(a) clean (b) noisy (c) mean

(d) median (e) spline (f) Kuwahara

(g) half-quadratic (h) TV flow (i) weighted TV flow

Table 2   Performance of TV flow and weighted TV without impulse 
noise

Per pixel orientation errors with TV flow and weighted TV flow for 
input noise with half-width parameters: 4, 8, 12, and 16. The empiri-
cally best denoising error is in bold, while the error with the empiri-
cally inferior method is in italics. The stars indicate the p-value for 
the statistically best performance compared with the other method. 
The p-values reported are for the paired t-test
* p < 0.1 ,   ** p < 0.01 ,   *** p < 0.001

Half-width (b) TV flow Weighted TV flow p-values

4 0.387
◦

0.362
◦*** .00004

8 0.531
◦

0.511
◦*** .00026

12 0.605
◦

0.585
◦** .00104

16 0.694
◦

0.679
◦*** .00027

Table 3   Performance of the TV flow and weighted TV flow with 5% 
impulse noise

Per pixel orientation errors for TV flow, and weighted TV flow for 
input noise with half-width parameters: 4, 8, 12, and 16 along with 
5% impulse noise. The empirically best denoising error is in bold, 
while the error with the empirically inferior method is in italics. The 
stars indicate the p-value for the statistically best performance com-
pared with the next best method. The p-values reported are for the 
paired t-test
* p < 0.1 ,   ** p < 0.01 ,   *** p < 0.001

Half-width (b) TV flow Weighted TV flow p-values

4 0.392
◦

0.365
◦*** .00003

8 0.648
◦

0.629
◦** .00107

12 0.615
◦

0.595
◦** .00103

16 0.705
◦

0.690
◦*** .00032



258	 Integrating Materials and Manufacturing Innovation (2023) 12:251–266

1 3

three Dream.3D operations, namely, thresholding, neigh-
borhood orientation correlation, and mask dilation. We 
used the default values for thresholding, neighborhood 
orientation correlation, and we used five iterations of dila-
tions in Erode/Dilate filter. We include the output of this 
pipeline in Fig. 4 for comparison. We depict the full-scale 
images in Fig. 7 in Appendix C.

Discussion

From Tables 2 and 3 we observed that the weighted TV 
flow consistently results in less denoising error than the 
TV flow. Moreover, this difference was statistically sig-
nificant. We thus compared the weighted TV flow with 
the filters discussed in Sect. 1.1. Table 5 shows that when 
no impulse noise is involved, the weighted TV flow is sig-
nificantly better (with p-value < .01 ) than mean, median, 
spline, Kuwahara, and half-quadratic filters for noise levels 
b = 12 and 16. For medium noise of 8, the weighted TV 
flow is statistically similar to the other methods. In real-
istic EBSD data, impulse-like noise is present. In such 
cases, Table 5 indicates that weighted TV flow produces 

numerically better results than other methods. Moreover, 
the results were statistically better for high noise levels. 
We also note that the grain boundaries after the restoration 
by the proposed algorithm were qualitatively similar to 
those found using other algorithms discussed in this paper. 
We discuss these findings in the Appendix D.

We observe the advantages of using the weighted TV 
flow on experimentally obtained EBSD maps in Fig. 4. 
Since the differences between these results were not easily 
perceived, we chose a smaller region from Fig. 7 from the 
Appendix C. Since the real EBSD dataset lacked ground 
truth, we could not objectively measure the accuracy of 
the denoising. However, from Fig. 4 we observe that the 
weighted TV flow provides visually better denoising than 
other algorithms while maintaining the grain boundaries.

One of the limitations of the weighted TV flow is that it 
promotes piecewise constant solutions. Thus, if the ground 
truth orientation map is textured, the algorithm will tend 
to produce a relatively flat orientation within each grain. 
Higher-order methods may address this limitation, which is 
beyond the scope of this work.

Table 4   Comparison of various 
denoising algorithms

Per pixel denoising errors (in degrees) with various denoising algorithms for input noise with half-width 
parameters: 4, 8, 12, and 16. The empirically best denoising error is in bold, while the error with the empir-
ically second-best method is in italics. The stars indicate the p-value for the statistically best performance 
compared with the second-best method. The p-values reported are for the paired t-test between the best 
methods and its closest competitor. * p < 0.1 ,   ** p < 0.01 ,   *** p < 0.001

Half-width (b) Mean Median Spline Kuwahara Half-quadratic Weighted TV flow p-values

4 0.566◦ 0.358
◦

0.480◦ 0.381◦ 0.305
◦*** 0.362◦ .00059

8 0.664◦ 0.557◦ 0.586◦ 0.569◦ 0.502
◦

0.511
◦ .31659

12 0.775◦ 0.649
◦

0.687◦ 0.694◦ 0.794◦ 0.585
◦* .05560

16 0.872◦ 0.805◦ 0.800
◦

0.813◦ 1.01◦ 0.679
◦** .00276

Table 5   Comparison of various 
denoising algorithms in the 
presence of 5% impulse noise

Per pixel denoising errors (in degrees) with various denoising algorithms for input noise with half-width 
parameters: 4, 8, 12, and 16, as well as 5% impulse noise. The empirically best denoising error is in bold, 
while the error with the empirically second-best method is in italics. The stars indicate the p-value for the 
statistically best performance compared with the empirically second-best method. The p-values reported are 
for the paired t-test between the best methods and its closest competitor. * p < .1 ,   ** p < .01 ,   *** p < .001

Half-width (b) Mean Median Spline Kuwahara Half-quadratic Weighted TV flow p-values

4 .600◦ .370
◦

.478◦ .414◦ .392◦ .365
◦ .21007

8 .784◦ .669
◦

.702◦ .699◦ .700◦ .629
◦* .01308

12 .812◦ .674
◦

.725◦ .726◦ .868◦ .595
◦* .02166

16 .898◦ .821
◦

.839◦ .836◦ 1.06◦ .690
◦*** .00019
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Conclusion

Our goal in this paper was to restore EBSD orientation data 
containing orientation noise and misindexing errors. To 
this effect, we proposed using weighted vector-valued TV 
flow with an automatic stopping criterion determined by an 
estimation of the noise variance. We compared the results 
obtained by the proposed algorithm with those from EBSD 
denoising algorithms in the current literature. The results 
show that the proposed algorithm significantly outperforms 
the methods compared in the paper for medium to high noise 
levels. An important advantage of the proposed algorithm 
is that there are no parameters to be set by the user, and the 

stopping criterion is determined directly from the noisy data 
itself. Moreover, the “weight” used in the TV flow retained 
the grain boundaries effectively, namely, did not blur them 
like the mean filter. This feature is crucial for EBSD maps, 
where the grain boundaries carry crucial structural infor-
mation about the material. Finally, we emphasize that even 
though we used EBSD maps to demonstrate effectiveness, 
the proposed algorithm is independent of the modality used. 
That is, the proposed algorithm applies to various other 
modalities, such as the automated crystal orientation map-
ping inside the transmission electron microscope (ACOM-
TEM), X-ray diffraction (XRD), and High-Energy X-ray 
Diffraction Microscopy (HEDM).

(a) Real data (b) mean (c) median

(d) spline (e) Kuwahara (f) half-quadratic

(g) Dream.3D pipeline (h) TV flow (i) weighted TV flow

Fig. 4   Details of the IPF-z maps for the results on a selected region of a real EBSD map from Fig. 7 are shown here
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Appendix A: The Preprocessing Algorithm

There are two main sources of jump discontinuities in the 
orientation data: non-unique representations of orientations 

due to crystal symmetry, and limited range of Euler angle 
representation. To address the non-unique representation 
owing to the crystal symmetry, we project the orientations 
data onto the fundamental region. Note that for each orienta-
tion in the data, there is a unique symmetrically equivalent 
orientation within the fundamental region. In the remainder 
of the section, we describe the preprocessing algorithm we 
propose to identify and correct the jump discontinuities due 
to the range of the Euler angle representation of the data.

The Euler angles range from 0◦ to 360◦ (or 180◦ ), 
depending on the axes representation used. For the range 
[0, 360), the jump discontinuities around angles 0◦ and 
360◦ can cause misorientation errors. As example, con-
sider that an Euler angle is 350◦ , which due to noise of 
15◦ changes to 350◦ + 15◦ = 365◦ . However, since 365◦ is 
not in the range [0◦, 360◦) , it is recorded as the equivalent 
angle of 5◦ causing a jump discontinuity within a grain, 
with a large error of ( 350◦ − 5◦) = 345◦ , rather than the 

)b()a(

Fig. 5   This figure shows the Euler angles in multiple grains of an 
example EBSD map as an RGB image. Image a shows the ground 
truth orientations. Image b shows the noisy data with up to 15◦ error 
in Euler angles. The green pixels show the jumps due to the angle 
discontinuity around 360◦ − 0◦

Fig. 6   Illustration of processing 
of noise due to jump disconti-
nuities in the Euler angles: a 
clean image, b image of local 
standard deviations, c standard 
deviation histogram of clean 
data, d noisy image; the grains 
with jump discontinuities are 
highlighted in circles e local 
standard deviations of noisy 
data, f standard deviation his-
togram of noisy data, g region 
with jump discontinuities, h 
image with corrected jump 
discontinuities, i image with 
corrected isolated pixels. In 
some regions in h, the isolated 
pixels were corrected, and the 
corresponding corrected regions 
in i are shown in circles

)c()b()a(

)f()e()d(

)i()h()g(
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original small error of 15◦ . Fig. 5b shows the jump dis-
continuities in Euler angles arising from adding 15◦ diso-
rientation angle error to data in Fig. 5a. Hence, before 
applying a denoising algorithm, we need to correct the 
jump discontinuities at 0◦ and 360◦ in the data using a pre-
processing algorithm. Note that the jump discontinuities 
are the feature of Euler angles, all images in this Appendix 
depict normalized Euler angles and are visualized as red, 
green, and blue (RGB) channels.

We demonstrate the steps of this algorithm in Fig. 6. 
We depict a clean EBSD map example obtained from 
DREAM.3D software [22, 31] in Fig. 6a. The EBSD maps 
contain orientations as Euler angles in Bunge notation i.e. 
ZXZ format [32]. Figure 6b shows the local standard devi-
ations computed in the neighborhood of a 3 × 3 window 
centered at each data point. The brighter spots in Fig. 6b 
correspond to larger values of the local standard devia-
tions. In Fig. 6c, we see the histogram of the local standard 
deviations. The orientation values within a single grain of 
clean EBSD data are comparable, as seen in Fig. 6a. Thus, 
we expect the local standard deviation near each data point 
within a single grain to be close to 0. Indeed, this phe-
nomenon is apparent in the histogram of the local stand-
ard deviations shown in Fig. 6c. Around 90% of the local 
standard deviations in Fig. 6c are equal to 0, an effect more 
pronounced due to the map being synthetically generated.

Figure 6d depicts the EBSD data with de la Vallée Pous-
sin noise [26] with a half-width b = 8 . We compute local 
standard deviations of the noisy data as shown in Fig. 6 
e, with its corresponding histogram in Fig. 6f. Note that 
Fig. 6e also contains the grain boundaries. The distribu-
tion of the local standard deviation is multimodal, with 
one prominent peak corresponding to the misorientation 
noise in the EBSD data. The other peaks correspond to the 
jump discontinuities showing high local standard devia-
tion. To separate the misorientation noise from the jump 
discontinuities and grain boundaries, we identify the end 
of the prominent peak. Figure 6g shows the locations with 
local standard deviations higher than the endpoint of the 
prominent peak. The Euler angles typically range from 
0◦ to 360◦ (or 180◦ ). If the range is from 0◦ to 360◦ , the 
two angles are equivalent. In such cases, we only need to 
identify points corresponding to the jump discontinuities 
at 0◦ and 360◦ . The jump discontinuities identified by our 
algorithm are depicted in Fig. 6 g. If the angle � at (x, y), a 
point of discontinuity, is near 0◦ (or 360◦ ) while majority 
of its neighbors are near 360◦ (or 0◦ ), we correct the angle 

� to 360 − � , otherwise � is unchanged. Fig. 6 h shows the 
EBSD data with the jump discontinuities corrected. The 
correction of jump discontinuities does not always capture 
all the discontinuous data points, and the remaining dis-
continuities may appear as misindexed points. We apply 
the algorithm given by Brewer and Michael [9] to identify 
misindexed points. We label a point misindexed if its angle 
differs from all its local neighbors by 5◦ or more. We then 
replace these misindexed data points with the local median. 
Figure 6 i depicts the image with the correction of isolated 
pixels. The circles in Fig. 6 i highlight some regions with 
these corrections.

Appendix B: Numerical Scheme

For the weighted TV flow,

For a single channel, we have

Note,
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Apply backward difference on each term separately we 
obtain

and

Note that D+xui−1,j = D−xui,j and thus,
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where

for k = 1, 2, 3. Thus,
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Appendix C: Experiments with the Real Data

See Figure 7.
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Appendix D: Grain Boundaries After 
Restoration

In this section, we demonstrate the effect of the algorithms 
on the boundaries of the restored EBSD maps. We found the 
location of the boundaries using the Farid edge detector [20]. 
We see in Fig. 8 the details of the boundaries of ESBD maps 
shown in Fig. 2. Figure 9 shows the details of the boundaries 
of maps in Fig. 3. The yellow color in Figs. 8 and 9 indicates 
the locations where the boundaries from the restored maps 
match the true boundaries exactly. The red color indicated the 

true boundaries from the clean EBSD map. Thus, the red-
colored pixels in images (b) - (h) in Figs. 8 and 9 show loca-
tions of the true boundaries that are missed by the algorithms. 
The green boundaries are the ones obtained from the restored 
algorithms. Thus, the green-colored boundaries in images (b) 
to (h) in Figs. 8 and 9 are the incorrect locations of the bounda-
ries found by the corresponding algorithms. We can infer from 
these images that the boundaries found by the proposed algo-
rithm are comparable in their accuracy with other algorithms 
discussed in this paper.

Fig. 7   Results of denoising real 
EBSD map using various filters

(a) real data (b) mean (c) median

(d) spline (e) Kuwahara (f) half-quadratic

(g) Dream.3D pipeline (h) TV flow (i) weighted TV flow
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Fig. 8   Details of the grain 
boundaries of EBSD map from 
Fig. 2. The yellow color repre-
sents accurate boundary detec-
tion. Red represents true grain 
boundaries that are missed by 
the algorithms. Green represents 
boundaries obtained by the cor-
responding algorithms which do 
not match the ground truth (a) clean (b) mean (c) median (d) spline

(e) Kuwahara (f) half-quadratic (g) TV flow (h) weighted TV flow
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